
1. Introduction

In C++, enum (enumeration) is a user-defined data type that consists of a set of named integer constants.
It is used to assign meaningful names to integral values, which improves code readability and
maintainability.

2. Meaning of ENUM

The word enumeration means listing items one by one. In programming, an enumeration allows you to
define a variable that can hold one of a set of predefined constant values.

Example:
enum Day { Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday };

Here, Day is a data type, and its possible values are Monday to Sunday.

3. Need for ENUM

 Makes code more readable and meaningful
 Avoids use of arbitrary numbers
 Helps prevent errors in code
 Improves maintainability
 Suitable for situations where a variable can have limited predefined values

4. Syntax of ENUM

enum EnumName { Constant1, Constant2, ..., ConstantN };

 EnumName: Name of the enumeration type
 Constant1, Constant2: Named constants (enumerators)

5. Declaration of ENUM Variables

After defining an enum type, you can declare variables of that type.

enum Color { Red, Green, Blue };
Color c1, c2;
c1 = Red;

6. Default Values of ENUM Constants

 By default, the first enumerator is assigned value 0.
 Subsequent enumerators increase by 1 automatically.

Example
enum Color { Red, Green, Blue };
cout << Red; // 0
cout << Green; // 1
cout << Blue; // 2

7. Assigning Custom Values

You can assign specific integer values to enumerators.

enum Color { Red = 5, Green = 10, Blue = 15 };

 The subsequent values increment automatically unless specified.

enum Color { Red = 5, Green, Blue };
// Red=5, Green=6, Blue=7

8. ENUM in Switch Case

ENUM is often used with switch statements for better readability.

enum Day { Monday, Tuesday, Wednesday };
Day today = Tuesday;

switch(today) {
 case Monday: cout << "First day"; break;
 case Tuesday: cout << "Second day"; break;
 case Wednesday: cout << "Third day"; break;
}

9. ENUM vs #define

Feature ENUM #define

Type Typed (user-defined type) Untyped constant

Scope Local to enum or namespace Global scope

Debugging Easier Harder

Values Integer only Any literal

10. ENUM and Type Safety

In C++11 and later, enum class is introduced for strongly typed enumerations. This prevents implicit
conversion to integers.

enum class Color { Red, Green, Blue };
Color c = Color::Red;

 enum class members must be accessed using scope resolution (::).
 Provides type safety.

11. Size of ENUM

 The size of an enum depends on the compiler (typically int).
 It can be specified explicitly in C++11 using enum EnumName : type { ... }

enum Color : unsigned char { Red, Green, Blue };

12. Implicit Conversion

 Regular enums can be implicitly converted to int.

enum Color { Red, Green, Blue };
int x = Red; // Allowed

 enum class does not allow implicit conversion, which is safer.

13. Advantages of ENUM

 Makes code readable and self-explanatory
 Limits the values a variable can take
 Reduces the risk of errors
 Helps in programming tasks like menus, options, days, months, status codes
 Supports type safety with enum class

14. Using ENUM in Functions

You can pass ENUM variables as function arguments for clarity.

void displayDay(Day d) {
 switch(d) {
 case Monday: cout << "Monday"; break;

 case Tuesday: cout << "Tuesday"; break;
 }
}

15. ENUM in Arrays

ENUM values can be used to index arrays.

enum Color { Red, Green, Blue };
int colorCount[3] = {5, 10, 15};
cout << colorCount[Green]; // 10

16. ENUM and Loops

You can loop through ENUM values using integer values.

for(int i=Red; i<=Blue; i++)
 cout << i << endl;

For enum class, explicit casting is required:

for(int i = (int)Color::Red; i <= (int)Color::Blue; i++)
 cout << i << endl;

17. ENUM in Real Life Applications

 Representing days of the week, months of the year
 Representing menu options in software
 Representing states in a finite state machine
 Status codes (Success, Failure, Pending)
 Colors in graphics programming

18. Common Mistakes

 Assigning non-integer values to enums
 Using enums without proper scope
 Forgetting that enum constants are essentially integers
 Confusing enum with enum class

19. Best Practices

 Use enum class in modern C++ for type safety

 Name enumerators clearly
 Avoid using magic numbers; prefer enums
 Use enums for limited, fixed sets of values
 Always initialize enum variables

20. Conclusion

ENUM in C++ is a powerful tool for defining symbolic names for integral constants.

 Regular enums are simple and easy to use.
 enum class provides type safety in modern C++.

Understanding ENUM helps programmers write readable, maintainable, and error-free code,
especially in applications with fixed sets of options, status codes, or menu items.

